九游体育,九游体育官网入口,九游体育官网

CN / EN
banner图
掌握核心技术 驾驭光的运用

技术文章

Technical Articles

计算机视觉技术的图像处理方法

日期:2020-04-21 来源:三姆森科技

计算机视觉系统中,视觉信息的处理技术主要依赖于图像处理方法,它包括图像增强、数据编码和传输、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于计算机对图像进行分析、处理和识别。

计算机视觉技术的图像处理方法_byy688.com
图像的增强

图像的增强用于调整图像的对比度,突出图像中的重要细节,改善视觉质量。通常采用灰度直方图修改技术进行图像增强。图像的灰度直方图是表示一幅图像灰度分布情况的统计特性图表,与对比度紧密相连。通过灰度直方图的形状,能判断该图像的清晰度和黑白对比度。如果获得一幅图像的直方图效果不理想,可以通过直方图均衡化处理技术作适当修改,即把一幅已知灰度概率分布图像中的像素灰度作某种映射变换,使它变成一幅具有均匀灰度概率分布的新图像,实现使图像清晰的目的。
图像的平滑

图像的平滑处理技术即图像的去噪声处理,主要是为了去除实际成像过程中因成像设备和环境所造成的图像失真,提取有用信息。众所周知,实际获得的陶像在形成、传输、接收和处理的过程中,不可避免地存在着外部干扰和内部干扰,如光电转换过程中敏感元件灵敏度的不均匀性、数字化过程的量化噪声、传输过程中的误差以及人为因素等.均会使图像变质。因此,去除噪声,恢复原始图像是图像处理中的一个重要内容。
图像的数据编码和传输

数字图像的数据量是相当庞大的,一幅512。512个像素的数字图像的数据量为256 K字节,若假设每秒传输25帧图像,则传输的信道速率为52.4M比特/秒。高信道速率意味瞢高投资,也意味著普及难度的增加,因此。传输过程中,对图像数据进行压缩显得非常重要。数据的压缩主要通过图像数据的编霄和变换压缩完成。图像数据编码一般采用预测编码.即将图像数据的空间变化规律和序列变化规律用一个预测公式表示.如果知道了,某一像素的前面各相邻像素值之后.可以用公式预测该像素值。该方法可将一幅图像的数据压缩到为数不多的几十个特传输,在接收端再变换回去即可。
边缘锐化

图像边缘锐化处理主要是加强图像中的轮廓边缘和细节,形成完整的物体边界.达到将物体从图像中分离出来或将表示同一物体表面的区域检测出来的目的。它是早期视觉理论和算法中的基本问题.也是中期和后期视觉成败的重要因素之一。
图像的分割

图像分割是将图像分成若干部分,每一部分对应于某一物体表面.在进行分割时.每一部分的灰度或纹理符合某一种均匀测度度量。某本质是将像素进行分类。分类的依据是像素的灰度值、颜色、频谱特性、空间特性或纹理特性等。图像分割是图像处理技术的基本方法之一,应用于诸如染色体分类、景物理解系统、机器视觉等方面。图像分割主要有两种方法:一是鉴于度量宅问的灰度闾值分割法。它是根据图像灰度直方图来决定图像空间域像素聚类。二是空间域区域增长分割方法。它是对在某种意义上(如灰度级、组织、梯度等)具有相似性质的像素连通集构成分割区域,该方法有很好的分割效果,但缺点是运算复杂.处理速度慢。
数据驱动的分割

常见的数据驱动分割包括基于边缘检测的分割、基于区域的分割、边缘与区域相结合的分割等。对于基于边缘检测的分割,其基本思想是先检测图像中的边缘点,再按一定策略连接成轮廓,从而构成分割区域。难点在于边缘检测时抗噪声性能和检测精度的矛盾,若提高检测精度,则噪声产生的伪边缘会导致不合理的轮廓;若提高抗噪声性能,则会产生轮廓漏检和位置偏差。为此,人们提出各种多尺度边缘检测方法,根据实际问题设计多尺度边缘信息的结合方案,以较好地兼顾抗噪声性能和检测精度。

基于区域的分割的基本思想是根据图像数据的特征将图像空间划分成不同的区域。常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。方法有阈值法、区域生长法、聚类法、松弛法等。

边缘检测能够获得灰度或彩色值的局部变化强度,区域分割能够检测特征的相似性与均匀性。将两者结合起来,通过边缘点的限制,避免区域的过分割;同时通过区域分割补充漏检的边缘,使轮廓更加完整。例如,先进行边缘检测与连接,再比较相邻区域的特征(灰度均值、方差),若相近则合并;对原始图像分别进行边缘检测和区域生长,获得边缘图和区域片段图后,再按一定的准则融合,得到最终分割结果。
模型驱动的分割

常见的模型驱动分割包括基于动态轮廓模型、组合优化模型、目标几何与统计模型。动态轮廓模型用于描述分割目标的动态轮廓。由于其能量函数采用积分运算,具有较好的抗噪声性,对目标的局部模糊也不敏感,因而适用性很广。但这种分割方法容易收敛到局部最优,因此要求初始轮廓应尽可能靠近真实轮廓。

近年来对通用分割方法的研究倾向于将分割看作一个组合优化问题,并采用一系列优化策略完成图像分割任务。主要思路是在分割定义的约束条件之外,根据具体任务再定义一个优化目标函数,所求分割的解就是该目标函数在约束条件下的全局最优解。以组合优化的观点处理分割问题,主要是利用一个目标函数综合表示分割的各种要求和约束,将分割变为目标函数的优化求解。由于目标函数通常是一个多变量函数,可采用随机优化方法。

基于目标几何与统计模型的分割是将目标分割与识别集成在一起的方法,常称作目标检测或提取。基本思想是将有关目标的几何与统计知识表示成模型,将分割与识别变为匹配或监督分类。常用的模型有模板、特征矢量模型、基于连接的模型等。这种分割方法能够同时完成部分或全部识别任务,具有较高的效率。然而由于成像条件变化,实际图像中的目标往往与模型有一定的区别,需要面对误检与漏检的矛盾,匹配时的搜索步骤也颇为费时。
图像的识别

图像的识别过程实际上可以看作是一个标记过程,即利用识别算法来辨别景物中已分割好的各个物体.给这螳物体赋予特定的标记,它是汁算机视觉系统必须完成的一个任务。按照网像识别从易到难.可分为几类问题?第一类识别问题中.图像中的像素表达了某一物体的某种特定信息。第二类问题中,待识别物是有形的整体。二维图像信息已经足够识别该物体.如文字识别、某些具有稳定可视表面的三维体识别等。第三类问题是由输入的二维图、要素图、2x5维图等.得出被测物体的三维表示。这里存着如何将隐含的三维信息提取出来的问题.当是今研究的热点。

目前用于图像识别的方法主要分为决策理论和结构方法。决策理论方法的基础是决策函数,利用它对模式向量进行分类识别.是以定时描述(如统计纹理)为基础的:结构方法的核心是将物体分解成』'模式或模式基元,而不同的物体结构有不同的基元串(或称字符串),通过对未知物体利用给定的模式基元求出编码边界,得到字符串,冉根据字符串判断它的属类。这是一种依赖于符号描述被测物体之间关系的方法。


返回列表
九游体育